वर्तमान उन्नत दुनिया में, डेटा ने व्यावहारिक रूप से सभी संघों के लिए सबसे बड़े और सबसे महत्वपूर्ण संसाधनों में से एक प्राप्त किया है। डेटा कहीं से भी लाया जा सकता है और यह बदल रहा है कि हम कैसे रहते हैं।
यदि आप डेटा के साथ काम करने के इच्छुक हैं, तो इसके साथ पहचानी गई विभिन्न सड़कों से दूर होना महत्वपूर्ण है। इस पोस्ट में, हम डेटा विज्ञान और बड़े डेटा विश्लेषण के बीच विरोधाभासों का विश्लेषण करेंगे। भले ही ये शब्द आपस में जुड़े हुए हैं, लेकिन एक व्यापक विपरीत है जो प्रत्येक दृष्टिकोण में उनके बीच स्थित है।
डेटा विज्ञान प्रशिक्षण और बिग डेटा प्रशिक्षण कार्यक्रम किसी भी सीखने और विकास टीम के लिए सूची में सबसे ऊपर होना चाहिए। ये विकासशील क्षेत्र एक आवश्यकता बन गए हैं क्योंकि संगठन डेटा की अधिकता से फ़िल्टर करने का प्रयास करते हैं। चलो हमारे वर्तमान विषय में तल्लीन करते हैं।
अवधारणाओं
डेटा साइंस क्या है?
डेटा वास्तविकताओं और डेटा के बिट्स का वर्गीकरण है। वास्तव में, डेटा या तो संगठित या असंरचित है। आइए शुरू में जानकारी के प्रकारों को समझें।
ऑर्गनाइज्ड डेटा एक ऐसा डेटा होता है जिसमें एक रिक्वेस्ट और एक ऑल-अराउंड स्ट्रक्चर होता है। चूंकि संगठित डेटा स्थिर है और बहुत अधिक विशेषता है, इसलिए इसे स्टोर और एक्सेस करना एक सरल काम है। इसके अतिरिक्त, डेटा के लिए स्कैनिंग सरल है क्योंकि हम संगठित डेटा को संग्रहीत करने के लिए फ़ाइलों का उपयोग कर सकते हैं।
असंरचित डेटा । यह एक परस्पर विरोधी प्रकार है क्योंकि इसमें कोई संरचना, संगठन या व्यवस्था नहीं है। जब हम उस पर ऑर्डर करते हैं, तो असंरचित डेटा धमाकेदार होता है। इसके बाद, यह असंरचित डेटा को समझने और काम करने के लिए एक परेशानी का काम है। वास्तव में, हड़बड़ी में, संगठित आंकड़ों से अधिक, हमारे पास जो लगातार है वह परस्पर विरोधी डेटा है। यह बहुत अच्छी तरह से ध्वनि, वीडियो, सामग्री या किसी अन्य संगठन के रूप में हो सकता है। SEMrush Traffic Analytics क्या है ? अधिक जानने के लिए इसकी गहराई से समीक्षा करें।
गिफ्टेड एक्सपर्ट्स के लिए वोकेशन के तरीकों के बाद डेटा साइंस सबसे उत्साहजनक और मांग के रूप में विकसित होता रहता है। आज, प्रभावी डेटा विशेषज्ञों का मानना है कि उन्हें बहुत सारी डेटा, डेटा माइनिंग और प्रोग्रामिंग कौशल को तोड़ने के लिए प्रथागत क्षमताओं से आगे बढ़ना चाहिए। अपने संघों के लिए लाभदायक विचार प्रकट करने के लिए, डेटा शोधकर्ताओं को डेटा विज्ञान जीवन चक्र की पूरी श्रृंखला की आवश्यकता होगी और प्रक्रिया के प्रत्येक अवधि में रिटर्न को बढ़ाने के लिए अनुकूलन क्षमता और समझ की एक डिग्री होनी चाहिए।
बिग डेटा क्या है?
बिग डेटा और डेटा साइंस कुछ विशेष भाषाएं हैं और साथ ही नवाचार के क्षेत्र में जोड़ने वाले विशाल विचार हैं। हालांकि ये शब्द आपस में जुड़े हुए हैं, लेकिन इनके बीच महत्वपूर्ण विरोधाभास हैं
बिग डेटा डेटा की भारी मात्रा के लिए दृष्टिकोण। यह डेटा की विशाल और जटिल व्यवस्था का प्रबंधन करता है जो एक पारंपरिक डेटा तैयार करने वाले ढांचे से निपट नहीं सकता है। बिग डेटा में ऐसे उपकरण और रणनीतियाँ शामिल होती हैं जो डेटा को अलग करती हैं, इसे कुशलता से संग्रहित करती हैं, और सहायक डेटा को डेटा से बाहर निकालती हैं। यहां विभिन्न प्रकार के डेटा हैं जो बिग डेटा प्रबंधित करते हैं:
संगठित डेटा : इस तरह के डेटा में डेटा की रचना होती है। इसका एक निश्चित निर्माण है। इस तरीके से, यह सीधा है और संगठित डेटा का विश्लेषण करता है।
अर्ध-संगठित डेटा : XML, JSON, और CSV जैसे विभिन्न रिकॉर्ड स्थिति वाले डेटा को अर्ध-संगठित डेटा के रूप में वर्गीकृत किया जाता है। यह ज्यादातर डेटा को सॉर्ट किया जाता है, जिससे इसे समझना मुश्किल हो जाता है।
अनस्ट्रक्चर्ड डेटा : इस तरह के डेटा में ऑल-अराउंड स्ट्रक्चर या कोई स्ट्रक्चर नहीं होता है। यह वर्तमान वास्तविकता डेटा लगातार असंरचित है और इसलिए परीक्षण को समझने के लिए। यह डेटा विभिन्न कंप्यूटरीकृत चैनलों के माध्यम से निर्मित होता है जिसमें सेल फोन, इंटरनेट, ऑनलाइन नेटवर्किंग और वेब-आधारित व्यावसायिक साइटें शामिल हैं।
डेटा साइंस एक्सपर्ट बनने के लिए स्किल्स जरूरी
एक डेटा साइंस विशेषज्ञ बनने के लिए, आपको शानदार जानकारी के साथ-साथ अधिकारियों की योग्यता के बारे में शानदार जानकारी होनी चाहिए। डेटा विज्ञान विशेषज्ञों का एक विशाल स्तर एक मास्टर की योग्यता या पीएच.डी. अंतर्दृष्टि, प्रोग्रामिंग और विज्ञान में उत्कृष्ट दृष्टिकोण के साथ डिग्री।
सी / सी ++, पायथन, आर, एसएएस, पर्ल, जावा बोलियों और इतने पर शामिल करने के लिए आवश्यक प्रोग्रामिंग क्षमताओं।
विशेष योग्यताओं के लिए एआई उपकरणों, डेटा माइनिंग, डेटा ओवरसाइटिंग, अनस्ट्रक्चर्ड डेटा प्रोसीजर, और इसके बाद की आवश्यकता होती है।
पत्राचार, उद्योग डेटा, और इसके बाद जैसे मौलिक व्यापार के दृष्टिकोण के साथ डेटाबेस के ढांचे पर ध्वनि डेटा।
बड़े डेटा विशेषज्ञ बनने के लिए आवश्यक कौशल
एक तड़के बड़े डेटा विशेषज्ञ के रूप में, आपको आर और पायथन जैसी प्रोग्रामिंग बोलियों की एक शक्तिशाली समझ होनी चाहिए।
आप गणित और सांख्यिकी में शानदार दृष्टिकोण होना चाहिए।
डेटा से लड़ने की क्षमता अतिरिक्त रूप से डेटा को किसी अन्य संगठन में बदलने और बदलने के लिए महत्वपूर्ण है।
अन्य आवश्यक क्षमताओं में डेटा प्रतिनिधित्व, एआई एप्टीट्यूड और रिलेशनल क्षमताएं शामिल हैं।
नौकरी की जिम्मेदारियां:
डेटा विज्ञान पेशेवर
डेटा विज्ञान विशेषज्ञ डेटा से ज्ञान के बिट्स प्राप्त करने के लिए एक खोजपूर्ण विश्लेषण करते हैं। बाद में किसी विशेष अवसर की घटना को पहचानने के लिए विभिन्न प्रकार की एआई गणनाओं का उपयोग किया जाता है। वे दूसरों के बीच अस्पष्ट संबंधों, कटा हुआ उदाहरण और बाजार के पैटर्न को भेद करने के लिए केंद्र हैं।
बिग डेटा पेशेवर
बड़े डेटा विश्लेषण के दायित्वों में विभिन्न स्रोतों से पकड़े गए विषम डेटा का बहुत अधिक प्रबंधन करना और उच्च गति से दिखाना शामिल है। ये विशेषज्ञ बड़ी डेटा व्यवस्थाओं के संचालन और संरचना को चित्रित करते हैं और स्पार्क, हैडोप जैसे बड़े डेटा नवाचारों का उपयोग करके उन्हें कैसे अवगत कराया जा सकता है, इत्यादि पूर्वापेक्षाओं पर निर्भर करता है।
अनुप्रयोग
डेटा साइंस के अनुप्रयोग
कम्प्यूटरीकृत वाणिज्यिक : डेटा विज्ञान गणना पूरे उन्नत प्रदर्शन अंतरिक्ष द्वारा उपयोग की जाती है - कम्प्यूटरीकृत घोषणाओं से लेकर झंडे दिखाने तक।
वेब खोज : कुछ सेकंड के भीतर खोज प्रश्नों के लिए सर्वोत्तम परिणाम प्रदान करने के लिए वेब क्रॉलर के माध्यम से डेटा विज्ञान गणना का उपयोग किया जाता है।
रीकमेंटर फ्रेमवर्क : यहां, संगठन डेटा के महत्व और ग्राहक के अनुरोधों के अनुसार सुझाव के रूप में अपनी वस्तुओं को आगे बढ़ाने के लिए डेटा विज्ञान नवाचारों का उपयोग करते हैं। ये चौखटे क्लाइंट अनुभव को बेहतर बनाने के साथ-साथ उनमें से अरबों से लागू वस्तुओं या प्रशासनों की खोज को सरल बनाते हैं।
बिग डेटा के अनुप्रयोग
गेमिंग : यहां, संगठन ज्ञान के बिट्स प्राप्त करने के लिए बड़े डेटा विश्लेषण का उपयोग करते हैं, उदाहरण के लिए, लाइक, लोथेस, क्लाइंट्स के कनेक्शन और इसके आगे।
सामाजिक बीमा क्षेत्र : हेल्थकेयर विशेषज्ञ सह-ऑप्स बड़े डेटा विश्लेषण का उपयोग करते हैं जैसे कार्यालयों में हार्डवेयर और दवाओं के उपयोग के बाद और शांत धारा को अपग्रेड करने के लिए, आउट पेशेंट डेटा को सॉर्ट करना, और इसी तरह।
यात्रा क्षेत्र : यात्रा संगठन विभिन्न चैनलों के माध्यम से अग्रिम मुठभेड़ों की खरीद के लिए बड़े डेटा विश्लेषण का उपयोग करते हैं। वे अतिरिक्त रूप से ग्राहक झुकाव और चाहत प्राप्त करते हैं, और वर्तमान सौदों और परिणामी भ्रामक के बीच संबंध की खोज करते हैं, जो उन्हें परिवर्तन का उन्नयन करते हैं।
मुझे आशा है, इस लेख से आपके डेटा साइंस और बिग डेटा तुलना का ज्ञान बढ़ जाता है।
Congratulation to you. I am happy after reading your post that you have posted in this blog. Thanks for this wonderful post and hoping to post more of this.!!
ردحذفParallel Kitchen Interior Design
Wardrobe Inside Design
Business Insights Software
Hettich Modular Kitchen
What a great article. Also take a look at:
ردحذفLos Gemelos
Toor
Skullduggery Toy Company
Digital Marketing Trends 2022
ردحذفBest Way to Factory Reset Canon Printer
How Do I Solve Brother Printer Errors On Windows 10?
Guide to Fix Epson Printer Communication Error
ردحذفTroubleshooting steps for Epson Printer Not Printing
Quick Methods To Reset The Canon Wired Printers
ردحذفSome Simple Methods Canon Printer Error Issue
How To Repair Damaged Profiles In Different Outlook Versions
How To Set The Printer To Online Manually
Fix Hp Printer Shows Connection Error
Instruction About The Solution Of Canon Printer Error
Thanks For Related My Informations ... Keep posting like this...
ردحذفhttps://www.betaposting.com/
https://bloggerperempuan.com
https://www.dailyproject.org
https://nmozi.com/
ردحذفhttps://telegra.ph/
https://theomnibuzz.com/
إرسال تعليق
We welcome relevant and respectful comments. Spam comments will not be approved.